February 2, 2012

Why is Plate Meshing Important?

Aside from the topic of plate connectivity, the concept of plate meshing is equally important to the analysis of structures using finite elements (plates).


Submeshing the model above will only improve the results so much, because any submeshing will still leave the cone shaped octagonally. Instead the model has been completely regenerated below as a 40-sided cone with five plates vertically instead of just one.

The total load is still the same, but you can see that the stress contours are much smoother, and show more subtlety. Furthermore the maximum stress shown on the contours is now 846 psi, which is almost double what it was in the roughly meshed cone.


So, why not mesh the cone with 80 sides? After all, that should produce greater accuracy. However, you will find that the results don’t change much between the 40-sided cone versus the 80-sided cone. This is because you are converging on a theoretical correct solution. Furthermore, the 40-sided cone (which uses 200 plates) solves four times faster than the 80-sided cone (which uses 800 plates).

As a rule of thumb, if the results change by less than 10% when doubling your mesh you can probably stop submeshing at that point.

Tags: RISA-3D Plates

You may also be interested in

Nov 8, 2018 | Tips & Tricks
Mat Slab Overturning and Sliding Safety Factors

RISAFoundation v11.0 includes two new tabs in the Safety Factors resul...
Read More

Aug 21, 2019 | Tips & Tricks
RISA-3D v18 Sneak Peek Videos

The new release of RISA-3D is right around the corner! Check out our t...
Read More

Jul 12, 2019 | Tips & Tricks
Implementing Realistic Behavior for T/C Members in RISA-3D

Tension or Compression (T/C) Only members are commonly used in steel b...
Read More

Jun 20, 2019 | Tips & Tricks
Understanding Wall Panel Forces with Rigid Diaphragms

Rigid diaphragms represent a plane of very high rigidity and distribut...
Read More